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The 1D quintic Complex Ginzburg Landau Equation (CGL) is a nonlinear PDE given
by ut =αuxx + βu + γu|u|2 + δu|u|4 where α = αR + iαI , β = βR + iβI , γ = γR + iγI , δ =
δR + iδI , αR > 0 and βR < 0 which is used to study pulses. When studying multi-pulse
solutions a difficulty arises - the pulses generally interact with each other, but the interaction
usually takes place by the pulse’s tails (which are usually exponentially decaying) and is
exponentially small with respect to the distance between pulses. This means that direct
numerical methods are usually very inefficient for computing the resulting interaction and
delicate dynamical properties. The aim of the project was therefore to implement a more
efficient numerical method using chebfun, an open source matlab package that uses piecewise
polynomial interpolation to perform numerical computations with functions to about 15-digit
accuracy.

The first step in the project was to use chebfun to model single pulse solutions.

Figure 1: Parameters used: aR = 1/2, aI = 1/2, bR = -0.05, gR = 1.8, gI = 1, dR = -0.05,
dI = 0.05, domain = [-10,10]

Once this was done, the next step was implementing the numerical method developed by
Tasos Rossides and David Lloyd.

1



We first linearize the problem. The linear operator is given by L := α∂2
x + β + f ′(V ),

Lw = α∂2
xw + βw + θ(|V |2)w + |V |2θ′(|V |2)w + V 2θ′(|V |2)w̄ where θ(z) = γz + δz2 and

f := γV |V |2 + δV |V |4. The eigenfunctions of L corresponding to the zero eigenvalues are
ϕr(x) := ∂rVξ(x)|r=0 = −V ′(x), ϕg(x) := ∂gVξ(x)|g=0 = iV (x) with Vξ = eigV (x− r) and r,g
constants.

We define the inner product as < v,w >:= R(
∫∞
∞ v(x)w̄(x)dx) so the adjoint operator

is given by L∗ = ᾱ∂2
x + β̄ + [f ′(V )]∗ and the adjoint eigenfunctions ψr(x).ψg(x) can be

normalized such that < φr, ψr >=< φg, ψg >= 1, < φr, ψg >=< φg, ψr >= 0. φr and ψr are
both odd and φg and ψg are even. We then define the shifted versions associated with Vξ:

ϕrξ(x) := eigϕr(x− r), ϕgξ(x)

ψrξ := eigψg(x− r)eigψr(x− r), ψgξ (x) := eigψg(x− r)
(Pξw)(x) :=< w,ψξr > ϕrξ+ < w,ψξg > ϕgξ

where the shifted functions also satisfy the same normalization.

Figure 2: Real parts plotted in blue, imaginary parts plotted in red. All eigenfunctions
normalized as described above

Define V−→
ξ

:= Vξ1(x) + Vξ2(x) where ξi = (ri, gi) and r̄, ḡ come from{
d
dt
r̄ = Je−cr̄sin(wr̄ + θ1)cos(ḡ)

d
dt
ḡ = Ke−cr̄cos(wr̄ + θ2)sin(ḡ)

Define u(t, x) = V−−→
ξ(t)

+ w(t, x), Pξi(t)w(t) = 0, i = 1, 2. We define the remainder function
as

wt − α∂xx − βw − f ′(V−→ξ )w =
2∑

k=1

r′kϕ
r
ξk

+
2∑

k=1

g′kϕ
g
ξk

+ φ(
−→
ξ ) +G(

−→
ξ , w)

where φ(
−→
ξ ) = φ(

−→
ξ , x) := f(V−→

ξ
(x))−

∑2
k=1 f(Vξk(x)) and G(

−→
ξ , w) := f(

−→
ξ +w)− f(

−→
ξ )−

f ′(
−→
ξ )w is of second order in w: G(

−→
ξ , 0) = G′w(

−→
ξ , 0) = 0. This is equivalent to

wt − α∂xx − βw − f ′(V−→ξ )w = h(
−→
ξ , w) + φ(

−→
ξ ) +G(

−→
ξ , w)
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where

h(
−→
ξ , w) = −

2∑
k=1

C−1(ξ, w)[[< φ(
−→
ξ ) +G(

−→
ξ , w), ψrξk > + < Ψk(

−→
ξ )w,ψrξk >]ϕrξk ]

−
2∑

k=1

C−1(ξ, w)[[< φ(
−→
ξ ) +G(

−→
ξ , w), ψgξk > + < Ψk(

−→
ξ )w,ψgξk >]ϕgξk ]

Ψk(
−→
ξ ) := f ′(V−→

ξ
)− f ′(Vξk)

C(
−→
ξ , w) =

(
[< ϕri , ψ

r
j > −δij < w, ∂xψ

r
j >]2i,j=1 [< ϕgi , ψ

r
j >]2i,j=1

[< ϕri , ψ
g
j >]2i,j=1 [< ϕgi , ψ

g
j > −δij < w, ∂xψ

g
j >]2i,j=1

)
Finally using the orthogonality conditions we can rewrite the PDE as

wt − (
−→
ξ )w = h(

−→
ξ , w) + φ(

−→
ξ ) +G(

−→
ξ , w)

where L(
−→
ξ ) := α∂2

x − β − f ′(V−→ξ )− P−→
ξ

and P−→
ξ
θ :=

∑2
i=1 Pξiθ which we can solve and plot

using chebfun. Below is a phase portrait with a few trajectories.

Figure 3: Phase portrait graphed using tspan=[0,1]*700*pi, y0 = [-r;0;r;pi/2] (with r =
1,0.9,0.8,0.7,0.6,0.5,0.4) and relative and absolute tolerance of 1e-5. The unusual trajectory
was generated with r = 0.6

3


